INTRODUCTORY

Sixth Edition

About the Author

Nivaldo Tro is a professor of chemistry at Westmont College in Santa Barbara, California, where he has been a faculty member since 1990. He received his Ph.D. in chemistry from Stanford University for work on developing and using optical techniques to study the adsorption and desorption of molecules to and from surfaces in ultrahigh vacuum. He then went on to the University of California at Berkeley, where he did postdoctoral research on ultrafast reaction dynamics in solution. Since coming to Westmont, Professor Tro has been awarded grants from the American Chemical Society Petroleum Research Fund, from the Research Corporation, and from the National Science Foundation to study the dynamics of various processes occurring in thin adlayer films adsorbed on dielectric surfaces. He has been honored as Westmont's Outstanding Teacher of the Year three times and has also received the college's Outstanding Researcher of the Year award. Professor Tro lives in Santa Barbara with his wife, Ann, and their four children, Michael, Ali, Kyle, and Kaden. In his leisure time, Professor Tro enjoys mountain biking, surfing, and being outdoors with his family.

To Annie

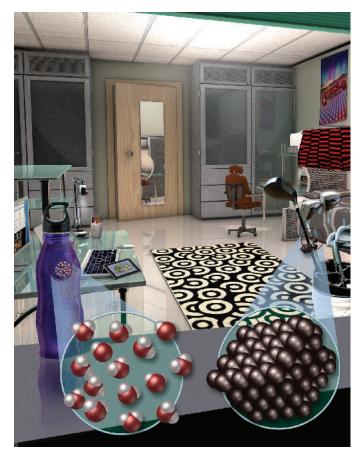
Brief Contents

	Preface	XİX
1	The Chemical World	2
2	Measurement and Problem Solving	14
3	Matter and Energy	60
4	Atoms and Elements	98
5	Molecules and Compounds	132
6	Chemical Composition	168
7	Chemical Reactions	206
8	Quantities in Chemical Reactions	248
9	Electrons in Atoms and the Periodic Table	284
10	Chemical Bonding	324
11	Gases	358
12	Liquids, Solids, and Intermolecular Forces	408
13	Solutions	444
14	Acids and Bases	484
15	Chemical Equilibrium	526
16	Oxidation and Reduction	572
17	Radioactivity and Nuclear Chemistry	608
18	Organic Chemistry	640
19	Biochemistry	694
	Appendix: Mathematics Review	MR-1
	Glossary	G-1
	Answers to Odd-Numbered Exercises	A-1
	Credits	C-1
	Index	I-1

Contents

Preface

1 The Chemical World


1.1	Sand and Water	3
1.2	Chemicals Compose Ordinary Things	4
1.3	The Scientific Method: How Chemists Think	5
	EVERYDAY CHEMISTRY Combustion and the Scientific Method	7
1.4	Analyzing and Interpreting Data Identifying Patterns in Data 8 Interpreting Graphs 9	8
1.5	A Beginning Chemist: How to Succeed	10
Self-As	ssessment Quiz	11
Key Te	rms	12
Exercises		12
Answers to Skillbuilder Exercises		13
Answers to Conceptual Checkpoints		13

2 Measurement and Problem Solving

2.1	The Metric Mix-up: A \$125 Million Unit Error	15
2.2	Scientific Notation: Writing Large and Small Numbers	15
2.3	Significant Figures: Writing Numbers to Reflect Precision Counting Significant Figures 20 Exact Numbers 20	17
	CHEMISTRY IN THE MEDIA The COBE Satellite	
	and Very Precise Measurements That Illuminate Our Cosmic Past	21
2.4	Significant Figures in Calculations Multiplication and Division 22 Rounding 22 Addition and Subtraction 23 Calculations Involving Both Multiplication/Division and Addition/Subtraction 24	22
2.5	The Basic Units of Measurement The Base Units 26 Prefix Multipliers 27 Derived Units 28	26

2.6	Problem Solving and Unit Conversion Converting Between Units 29 General Problem-Solving Strategy 31	28
2.7	Solving Multistep Unit Conversion Problems	33
2.8	Unit Conversion in Both the Numerator and Denominator	35
2.9	Units Raised to a Power	36
	CHEMISTRY AND HEALTH Drug Dosage	37
2.10	Density Calculating Density 40 Density as a Conversion Factor 41	39
	CHEMISTRY AND HEALTH Density, Cholesterol, and Heart Disease	42
2.11	Numerical Problem-Solving Strategies	
	and the Solution Map	43
Self-As	sessment Quiz	45
Кеу Те	rms	51
Exerci	ses	51
Answe	rs to Skillbuilder Exercises	59
Answe	rs to Conceptual Checkpoints	59

2	Matter and
J	Energy

3.1	In Your Room	61
3.2	What Is Matter?	62
3.3	Classifying Matter According to Its State: Solid, Liquid, and Gas	63
3.4	Classifying Matter According to Its Composition: Elements, Compounds, and Mixtures	64
3.5	Differences in Matter: Physical and Chemical Properties	67
3.6	Changes in Matter: Physical and Chemical Changes Separating Mixtures Through Physical Changes 71	69 L
3.7	Conservation of Mass: There Is No New Matter	71
3.8	Energy Units of Energy 73	72
	CHEMISTRY IN THE ENVIRONMENT Getting Energy	
	out of Nothing?	73
3.9 3.10	Energy and Chemical and Physical Change Temperature: Random Motion of	75
	Molecules and Atoms	76

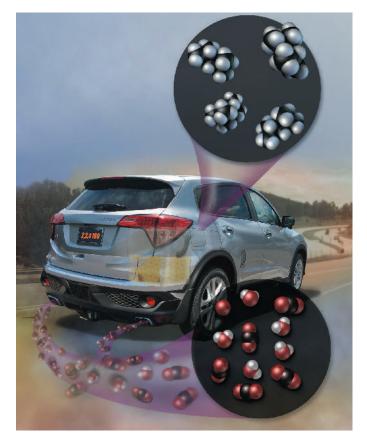
3.11	Temperature Changes: Heat Capacity	80
	EVERYDAY CHEMISTRY Coolers, Camping, and the Heat Capacity of Water	81
3.12	Energy and Heat Capacity Calculations	81
Self-Assessment Quiz		85
Key Terms		90
Exercises		90
Answers to Skillbuilder Exercises		97
Answers to Conceptual Checkpoints		97

Atoms and **Elements**

4.1	Experiencing Atoms at Tiburon	99
4.2	Indivisible: The Atomic Theory	100
4.3	The Nuclear Atom	101
4.4	The Properties of Protons, Neutrons,	
	and Electrons	103
	EVERYDAY CHEMISTRY Solid Matter?	103
4.5	Elements: Defined by Their Numbers	
	of Protons	105
4.6	Looking for Patterns: The Periodic Law	
	and the Periodic Table	107
4.7	lons: Losing and Gaining Electrons	112
4.8	Isotopes: When the Number of	
	Neutrons Varies	115
4.9	Atomic Mass: The Average Mass of an	
	Element's Atoms	117
	CHEMISTRY IN THE ENVIRONMENT Radioactive	
	Isotopes at Hanford, Washington	118
Self-As	sessment Quiz	120
Key Te	rms	123
Exercis	ses	123
Answe	rs to Skillbuilder Exercises	131
Answe	rs to Conceptual Checkpoints	131

Molecules and Compounds

5.1	Sugar and Salt	133
5.2	Compounds Display Constant	
	Composition	134
5.3	Chemical Formulas: How to Represent	
	Compounds	135
	Polyatomic lons in Chemical Formulas 137	
	Types of Chemical Formulas 138	


5.4	A Molecular View of Elements and Compounds Atomic Elements 139 Molecular Elements 139 Molecular Compounds 140 Ionic Compounds 140	139
5.5	Writing Formulas for Ionic Compounds Writing Formulas for Ionic Compounds Containing Only Monoatomic Ions 142 Writing Formulas for Ionic Compounds Containing Polyatomic Ions 143	142
5.6	Nomenclature: Naming Compounds	144
5.7	Naming Ionic Compounds Naming Binary Ionic Compounds Containing a Metal That Forms Only One Type of Cation 145 Naming Binary Ionic Compounds Containing a Metal That Forms More Than One Type of Cation 146 Naming Ionic Compounds Containing a Polyatomic Ion 147	144
	EVERYDAY CHEMISTRY Polyatomic lons	148
5.8	Naming Molecular Compounds	149
5.9	Naming Acids Naming Binary Acids 150 Naming Oxyacids 151	150
5.10	Nomenclature Summary Ionic Compounds 152 Molecular Compounds 152 Acids 153	152
5.11	Formula Mass: The Mass of a Molecule	
	or Formula Unit	153
	sessment Quiz	154
Key Ter	rms	158
Exercises		159
Answei	rs to Skillbuilder Exercises	166
Answei	rs to Conceptual Checkpoints	167

6 Chemical Composition

6.1	How Much Sodium?	169
6.2	Counting Nails by the Pound	170
6.3	Counting Atoms by the Gram	171
	Converting between Moles and	
	Number of Atoms 171	
	Converting between Grams and	
	Moles of an Element 172	
	Converting between Grams of an	
	Element and Number of Atoms 175	
6.4	Counting Molecules by the Gram Converting between Grams and Moles of a Compound 176	176

6.5	Converting between Grams of a Compound and Number of Molecules 178 Chemical Formulas as Conversion Factors Converting between Moles of a Compound and Moles of a Constituent Element 180 Converting between Grams of a Compound and Grams of a Constituent Element 181	179
6.6	Mass Percent Composition of Compounds	183
6.7	Mass Percent Composition from a Chemical Formula	184
	CHEMISTRY AND HEALTH Fluoridation of Drinking Water	186
6.8	Calculating Empirical Formulas for Compounds Calculating an Empirical Formula from Experimental Data 187	186
6.9	Calculating Molecular Formulas for	
	Compounds	189
Self-A	ssessment Quiz	191
Key Terms		197
Exercises		197
Answers to Skillbuilder Exercises		205
Answe	ers to Conceptual Checkpoints	205

7 Chemical Reactions

206

7.1	Grade School Volcanoes, Automobiles,	
	and Laundry Detergents	207
7.2	Evidence of a Chemical Reaction	208
7.3	The Chemical Equation	211
7.4	How to Write Balanced Chemical Equations	213
7.5	Aqueous Solutions and Solubility: Compounds Dissolved in Water Aqueous Solutions 216 Solubility 217	216
7.6	Precipitation Reactions: Reactions in Aqueous Solution That Form a Solid	220
7.7	Writing Chemical Equations for Reactions in Solution: Molecular, Complete Ionic, and Net Ionic Equations	223
7.8	Acid–Base and Gas Evolution Reactions Acid–Base (Neutralization) Reactions 225 Gas Evolution Reactions 226	225
	CHEMISTRY AND HEALTH Neutralizing Excess	
	Stomach Acid	228
7.9	Oxidation–Reduction Reactions	228
7.10	Classifying Chemical Reactions Classifying Chemical Reactions by What Atoms Do 231 Classification Flowchart 233	230

Self-Assessment Quiz	235
Key Terms	240
Exercises	240
Answers to Skillbuilder Exercises	247
Answers to Conceptual Checkpoints	247

Quantities in Chemical Reactions 248

8.1	Climate Change: Too Much Carbon Dioxide	249
8.2	Making Pancakes: Relationships between Ingredients	250
8.3	Making Molecules: Mole-to-Mole Conversions	251
8.4	Making Molecules: Mass-to-Mass Conversions	253
8.5	More Pancakes: Limiting Reactant, Theoretical Yield, and Percent Yield	257
8.6	Limiting Reactant, Theoretical Yield, and	
	Percent Yield from Initial Masses of Reactants	260
8.7	Enthalpy: A Measure of the Heat Evolved or Absorbed in a Reaction Sign of ΔH_{rxn} 265	265
	EVERYDAY CHEMISTRY Bunsen Burners Stoichiometry of ΔH_{rxn} 266	265
Self-As	ssessment Quiz	268
Key Terms		273
Exercises		274
Answers to Skillbuilder Exercises		283
Answers to Conceptual Checkpoints		283

9 Electrons in Atoms and the Periodic Table 284

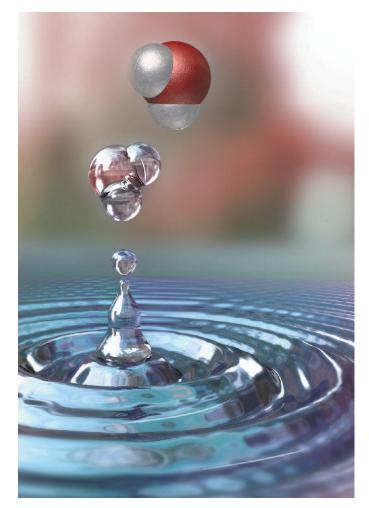
9.1	Blimps, Balloons, and Models of the Atom	285
9.2	Light: Electromagnetic Radiation	286
9.3	The Electromagnetic Spectrum	288
	CHEMISTRY AND HEALTH Radiation Treatment for Cancer	290
9.4	The Bohr Model: Atoms with Orbits	291
9.5	The Quantum-Mechanical Model: Atoms with Orbitals Baseball Paths and Electron Probability Maps 2 From Orbits to Orbitals 295	294 294
9.6	Quantum-Mechanical Orbitals and Electron Configurations Quantum-Mechanical Orbitals 296 Electron Configurations: How Electrons Occupy Orbitals 298	295
9.7	Electron Configurations and the Periodic Table	302

9.8	The Explanatory Power of the	
	Quantum-Mechanical Model	305
9.9	Periodic Trends: Atomic Size, Ionization Energy, and Metallic Character Atomic Size 307	307
	CHEMISTRY AND HEALTH Pumping lons: Atomic Size and Nerve Impulses Ionization Energy 309 Metallic Character 311	309
Self-Assessment Quiz		313
Key Tei	rms	316
Exercises		316
Answers to Skillbuilder Exercises		323
Answers to Conceptual Checkpoints		323

10 Chemical Bonding 324

10.1	Bonding Models and AIDS Drugs	325
10.2	Representing Valence Electrons with Dots	326
10.3	Lewis Structures of Ionic Compounds: Electrons Transferred	327
10.4	Covalent Lewis Structures: Electrons Shared Single Bonds 328 Double and Triple Bonds 329	328
10.5	Writing Lewis Structures for Covalent Compounds Writing Lewis Structures for Polyatomic Ions Exceptions to the Octet Rule 333	330 332
10.6	Resonance: Equivalent Lewis Structures for the Same Molecule	334
10.7	Predicting the Shapes of Molecules Representing Molecular Geometries on Paper	336 339
	CHEMISTRY AND HEALTH Fooled by Molecular Shape	340
10.8	Electronegativity and Polarity: Why Oil and Water Don't Mix Electronegativity 341 Polar Bonds and Polar Molecules 343	341
	EVERYDAY CHEMISTRY How Soap Works	345
Self-As	sessment Quiz	346
Key Te	rms	349
Exercises		349
Answers to Skillbuilder Exercises		357
Answers to Conceptual Checkpoints		357

- 11.1 Extra-Long Straws
- **11.2** Kinetic Molecular Theory: A Model for Gases
- **11.3** Pressure: The Result of Constant Molecular Collisions


Pressure Units 363 Pressure Unit Conversion 364 365 11.4 Boyle's Law: Pressure and Volume **EVERYDAY CHEMISTRY** Airplane Cabin 366 Pressurization **EVERYDAY CHEMISTRY** Extra-long Snorkels 370 **11.5** Charles's Law: Volume and Temperature 370 **11.6** The Combined Gas Law: Pressure, Volume, 374 and Temperature 11.7 Avogadro's Law: Volume and Moles 376 **11.8** The Ideal Gas Law: Pressure, Volume, 378 Temperature, and Moles Determining Molar Mass of a Gas from the Ideal Gas Law 382 Ideal and Nonideal Gas Behavior 384 11.9 Mixtures of Gases 384 Partial Pressure and Physiology 386 Collecting Gases over Water 387 **11.10** Gases in Chemical Reactions 388 Molar Volume at Standard Temperature and Pressure 391 **CHEMISTRY IN THE ENVIRONMENT** Air Pollution 393 Self-Assessment Quiz 394 **Key Terms** 398 399 Exercises Answers to Skillbuilder Exercises 407

407

- Answers to Conceptual Checkpoints
- 362

358

359

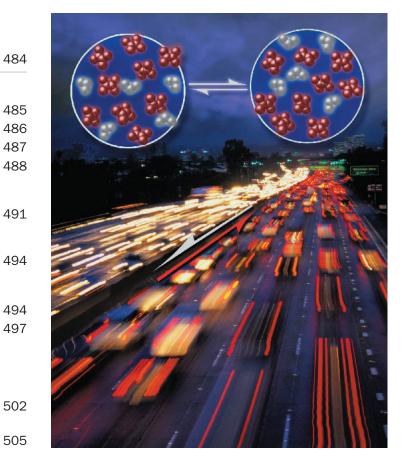
12 Liquids, Solids, and Intermolecular Forces

12.1	Spherical Water	409
12.2	Properties of Liquids and Solids	410
12.3	Intermolecular Forces in Action: Surface	
	Tension and Viscosity	412
	Surface Tension 412	
	Viscosity 413	
12.4	Evaporation and Condensation	413
	Boiling 415	
		16
	Heat of Vaporization 416	
12.5	Melting, Freezing, and Sublimation	418
	Energetics of Melting and Freezing 419	
	Heat of Fusion 419 Sublimation 421	
40.0		
12.6	· · · · · · · · · · · · · · · · · · ·	
	Dipole–Dipole, Hydrogen Bonding, and	
	Ion-Dipole	423
	Dispersion Force 423	
	Dipole–Dipole Force 424	

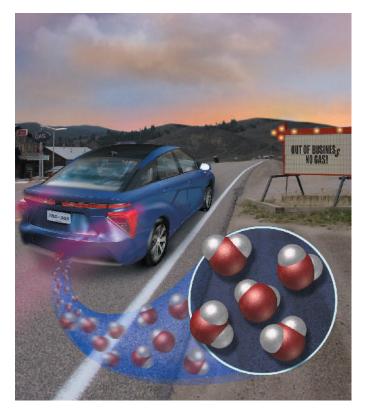
408

Hydrogen Bonding 426 Ion–Dipole Force 427	
CHEMISTRY AND HEALTH Hydrogen Bonding in DNA	428
12.7 Types of Crystalline Solids: Molecular, Ionic, and Atomic Molecular Solids 430 Ionic Solids 430 Atomic Solids 431	430
12.8 Water: A Remarkable Molecule	432
CHEMISTRY IN THE ENVIRONMENT Water Pollution	
and the Flint River Water Crisis	433
Self-Assessment Quiz	434
Key Terms	438
Exercises	438
Answers to Skillbuilder Exercises	
Answers to Conceptual Checkpoints	

13 Solutions 444


13.1	Tragedy in Cameroon	445
13.2	Solutions: Homogeneous Mixtures	446
13.3	Solutions of Solids Dissolved in Water: How to Make Rock Candy Solubility and Saturation 448 Electrolyte Solutions: Dissolved Ionic Solids 44 How Solubility Varies with Temperature 450	447 19
13.4	Solutions of Gases in Water: How Soda Pop Gets Its Fizz	450
13.5	Specifying Solution Concentration: Mass Percent Mass Percent 452 Using Mass Percent in Calculations 453	452
13.6	Specifying Solution Concentration: Molarity Using Molarity in Calculations 456 Ion Concentrations 458	455
13.7	Solution Dilution	458
13.8	Solution Stoichiometry	460
13.9	Freezing Point Depression and Boiling Point Elevation: Making Water Freeze Colder and Boil Hotter	463
	Freezing Point Depression 463	405
	EVERYDAY CHEMISTRY Antifreeze in Frogs Boiling Point Elevation 465	465
13.10	Osmosis: Why Drinking Saltwater Causes Dehydration	467
	CHEMISTRY AND HEALTH Solutions in Medicine	468
Self-As	sessment Quiz	469
Key Ter	ms	475
Exercis	es	475
Answer	s to Skillbuilder Exercises	483
Answer	s to Conceptual Checkpoints	483

Acids and Bases


14.1	Sour Patch Kids and International	
	Spy Movies	485
14.2	Acids: Properties and Examples	486
14.3	Bases: Properties and Examples	487
14.4	Molecular Definitions of Acids and Bases The Arrhenius Definition 489 The Brønsted–Lowry Definition 489	488
14.5	Reactions of Acids and Bases Neutralization Reactions 491 Acid Reactions 492	491
	EVERYDAY CHEMISTRY What Is in My Antacid? Base Reactions 494	494
14.6	Acid–Base Titration: A Way to Quantify the	
	Amount of Acid or Base in a Solution	494
14.7	Strong and Weak Acids and Bases Strong Acids 497 Weak Acids 498 Strong Bases 501 Weak Bases 501	497
14.8	Water: Acid and Base in One	502
14.9	The pH and pOH Scales: Ways to Express Acidity and Basicity Calculating pH from $[H_3O^+]$ 506 Calculating $[H_3O^+]$ from pH 507 The pOH Scale 508	505
14.10	Buffers: Solutions That Resist pH Change	509
	CHEMISTRY AND HEALTH Alkaloids	510
	CHEMISTRY AND HEALTH The Danger of Antifreeze	512
Self-As	sessment Quiz	512
Key Ter	ms	518
Exercises		518
Answers to Skillbuilder Exercises		525
Answei	rs to Conceptual Checkpoints	525

15 Chemical Equilibrium

15.1 15.2	Life: Controlled Disequilibrium The Rate of a Chemical Reaction Collision Theory 528 How Concentration Affects the Rate of a	527 528
	Reaction 530	
	How Temperature Affects the Rate of a	
	Reaction 531	
15.3	The Idea of Dynamic Chemical Equilibrium	532
15.4	The Equilibrium Constant: A Measure of How	
	Far a Reaction Goes	535
	Writing Equilibrium Constant Expressions	
	for Chemical Reactions 535	
	The Significance of the Equilibrium Constant 5	536

15.5	Heterogeneous Equilibria: The Equilibrium Expression for Reactions Involving a Solid or a Liquid	538
15.6	Calculating and Using Equilibrium Constants Calculating Equilibrium Constants 539 Using Equilibrium Constants in Calculations 5	539 541
15.7	Disturbing a Reaction at Equilibrium: Le Châtelier's Principle	542
15.8	The Effect of a Concentration Change on Equilibrium	544
15.9	The Effect of a Volume Change on Equilibrium	546
	CHEMISTRY AND HEALTH How a Developing Fetus Gets Oxygen from Its Mother	548
15.10	The Effect of a Temperature Change on Equilibrium	549
15.11	The Solubility-Product Constant Using K_{sp} to Determine Molar Solubility 552	551
15.12	The Path of a Reaction and the Effect of a Catalyst How Activation Energies Affect Reaction Rates Catalysts Lower the Activation Energy 555 Enzymes: Biological Catalysts 556	553 554
Self-As	sessment Quiz	558
Key Te	rms	562
Exercises		562
Answei	rs to Skillbuilder Exercises	570
Answers to Conceptual Checkpoints		571

16 Oxidation and Reduction

572

16.1	The End of the Internal Combustion Engine?	573
16.2	Oxidation and Reduction: Some Definitions	574
16.3	Oxidation States: Electron Bookkeeping	577
	EVERYDAY CHEMISTRY The Bleaching of Hair	579
16.4	Balancing Redox Equations	580
	CHEMISTRY IN THE ENVIRONMENT Photosynthesis and Respiration: Energy for Life	585
16.5	The Activity Series: Predicting Spontaneous Redox Reactions The Activity Series of Metals 586	585
	Predicting Whether a Metal Will Dissolve in Acid 588	
16.6	Batteries: Using Chemistry to Generate Electricity Dry-Cell Batteries 591 Lead-Acid Storage Batteries 592 Fuel Cells 592	589
16.7	Electrolysis: Using Electricity to Do Chemistry	593
16.8	Corrosion: Undesirable Redox Reactions	594
	EVERYDAY CHEMISTRY The Fuel-Cell Breathalyzer	595
Self-As	sessment Quiz	596
Key Terms		600
Exercises		600
Answers to Skillbuilder Exercises		607
Answers to Conceptual Checkpoints		607

17 Radioactivity and Nuclear Chemistry 608

17.1 Diagnosing Appendicitis	609
17.2 The Discovery of Radioactivity	610
17.3 Types of Radioactivity: Alpha, Beta, and Gamma Decay Alpha (α) Radiation 612 Beta (β) Radiation 614 Gamma (γ) Radiation 615 Positron Emission 616	611
17.4 Detecting Radioactivity	618
17.5 Natural Radioactivity and Half-Life Half-Life 619	619
CHEMISTRY AND HEALTH Environmental Rac A Natural Radioactive Decay Series 621	
17.6 Radiocarbon Dating: Using Radioactivity	
Measure the Age of Fossils and Other Art	
CHEMISTRY IN THE MEDIA The Shroud of Tur	rin 623
17.7 The Discovery of Fission and the Atomic Bomb	624
17.8 Nuclear Power: Using Fission to	
Generate Electricity	626
17.9 Nuclear Fusion: The Power of the Sun	627
17.10 The Effects of Radiation on Life Acute Radiation Damage 628 Increased Cancer Risk 628 Genetic Defects 629 Measuring Radiation Exposure 629	628
17.11 Radioactivity in Medicine Isotope Scanning 629 Radiotherapy 630	629
Self-Assessment Quiz	631
Key Terms	634
Exercises	634
Answers to Skillbuilder Exercises	639
Answers to Conceptual Checkpoints	639

18 Organic Chemistry 640

18.1	What Do I Smell?	641
18.2	Vitalism: The Difference between Organic	
	and Inorganic	642
18.3	Carbon: A Versatile Atom	643
	CHEMISTRY IN THE MEDIA The Origin of Life	644
18.4	Hydrocarbons: Compounds Containing Only	
	Carbon and Hydrogen	645
18.5	Alkanes: Saturated Hydrocarbons	646
	CHEMISTRY IN THE MEDIA Environmental Problems	
	Associated with Hydrocarbon Combustion	647

18.6	Isomers: Same Formula, Different Structure	651
18.7	Naming Alkanes	652
18.8	Alkenes and Alkynes About Alkenes and Alkynes 655 Naming Alkenes and Alkynes 657	655
18.9	Hydrocarbon Reactions Alkane Substitution Reactions 659 Alkene and Alkyne Addition Reactions 659	658
18.10	Aromatic Hydrocarbons Naming Aromatic Hydrocarbons 661	660
18.11	Functional Groups	663
18.12	Alcohols Naming Alcohols 664 About Alcohols 665	664
18.13	Ethers Naming Ethers 665 About Ethers 666	665
18.14	Aldehydes and Ketones Naming Aldehydes and Ketones 667 About Aldehydes and Ketones 667	666
18.15	Carboxylic Acids and Esters Naming Carboxylic Acids and Esters 669 About Carboxylic Acids and Esters 669	668
18.16	Amines	671
18.17	Polymers	672
	EVERYDAY CHEMISTRY Kevlar: Stronger	074
	Than Steel	674
	sessment Quiz	675
Key Ter Exercis		679 680
	es s to Skillbuilder Exercises	692
	s to Conceptual Checkpoints	693
Allawel	a to obliceptual olicekpolitia	000

19.1	The Human Genome Project	695
19.2	The Cell and Its Main Chemical	
	Components	696
19.3	Carbohydrates: Sugar, Starch, and Fiber Monosaccharides 697	696
	Disaccharides 698	
	Polysaccharides 699	
19.4	Lipids	701
	Fatty Acids 701	
	Fats and Oils 702	
	Other Lipids 704	
	CHEMISTRY AND HEALTH Dietary Fats	706
19.5	Proteins	707
19.6	Protein Structure	711
	Primary Structure 712	
	Secondary Structure 712	

	EVERYDAY CHEMISTRY Why Hair Gets Longer When It Is Wet Tertiary Structure 714 Quaternary Structure 715	714
19.7	Nucleic Acids: Molecular Blueprints	716
19.8	DNA Structure, DNA Replication, and Protein Synthesis DNA Structure 719 DNA Replication 720 Protein Synthesis 721	718
	CHEMISTRY AND HEALTH Drugs for Diabetes	723
Self-Assessment Quiz		723
Key Te	rms	726
Exercis	ses	726
Answers to Skillbuilder Exercises		734
Answe	rs to Conceptual Checkpoints	734
Appe	ndix: Mathematics Review	MR-1
Gloss	sary	G-1
Answ	ers to Odd-Numbered Exercises	A-1
Credi	its	C-1
Index	K	I-1

Three-Column Problem Solving Strategies

Solving Unit Conversion Problems	32
Solving Numerical Problems	43
Writing Formulas for Ionic Compounds	142
Obtaining an Empirical Formula from Experimental Data	188
Writing Balanced Chemical Equations	214
Writing Equations for Precipitation Reactions	222
Writing Lewis Structures for Covalent Compounds	331
Predicting Geometry Using VSEPR Theory	339
Balancing Redox Equations Using the Half-Reaction Method	581
Naming Alkanes	653

Interactive Media Contents

Key Concept Videos

The eText 2.0 icon indicates that this feature is embedded and interactive in the eText.

PEARSON

eText

3.3	Classifying Matter	63	
4.4	Subatomic Particles and Isotope Symbols	103	
5.7	Naming Ionic Compounds	144	
5.8	Naming Molecular Compounds	149	
7.3	Writing and Balancing Chemical Equations	211	
8.2	Reaction Stoichiometry	250	

Interactive Worked Examples

	2.0	
2.10	Solving Multistep Unit Conversion Problems	33
2.14	Solving Multistep Conversion Problems	20
	Involving Units Raised to a Power	38
2.16	Density as a Conversion Factor	41
3.5	Conversion of Energy Units	74
3.10	Relating Heat Energy to Temperature Changes	83
4.8	Numbers of Protons and Neutrons	
	from Isotope Symbols	117
4.9	Calculating Atomic Mass	119
5.5	Writing Formulas for Ionic Compounds	142
5.14	Nomenclature Using Figure 5.17	153
6.3	The Mole Concept—Converting between Grams and Number of Atoms	175
6.7	Chemical Formulas as Conversion Factors— Converting between Grams of a Compound and Grams of a Constituent Element	182
6.9	Mass Percent Composition	185
6.11	Obtaining an Empirical Formula from	
	Experimental Data	188
7.2	Writing Balanced Chemical Equations	214
7.7	Writing Equations for Precipitation Reactions	222
8.2	Mass-to-Mass Conversions	255
8.5	Finding Limiting Reactant and	
	Theoretical Yield	262
8.7	Stoichiometry Involving $\Delta H_{ m rxn}$	267

8.5	Limiting Reactant, Theoretical Yield,	
	and Percent Yield	257
10.6	Resonance and Formal Charge	334
14.4	Definitions of Acids and Bases	489
14.10	Buffers	509
15.7	Le Châtelier's Principle	542
17.3	Types of Radioactivity	611

9.5	Writing Electron Configurations from the Periodic Table	305
9.6	Atomic Size	308
10.4	Writing Lewis Structures for Covalent	
	Compounds	331
10.8	Predicting Geometry Using VSEPR Theory	339
10.11	Determining Whether a Molecule Is Polar	344
11.6	The Ideal Gas Law	380
11.8	Molar Mass, the Ideal Gas Law, and	
	Mass Measurement	383
11.11	Gases in Chemical Reactions	390
12.1	Using the Heat of Vaporization in	
	Calculations	417
12.4	Dipole-Dipole Forces	425
13.2	Using Mass Percent in Calculations	454
13.3	Calculating Molarity	456
13.4	Using Molarity in Calculations	457
13.7	Solution Stoichiometry	462
14.4	Acid–Base Titration	496
14.8	Calculating pH from [H ₃ O ⁺]	507
15.3	Calculating Equilibrium Constants	540
15.4	Using Equilibrium Constants in Calculations	541
15.9	Calculating Molar Solubility from $K_{\rm sp}$	553
16.7	Balancing Redox Reactions	583
17.1	Writing Nuclear Equations for Alpha (α) Decay	613

This book is for *you*, and every text feature is meant to help you learn and succeed in your chemistry course. I wrote this book with two main goals for you in mind: to see chemistry as you never have before and to develop the problem-solving skills you need to succeed in chemistry.

I want you to experience chemistry in a new way. I have written each chapter to show you that chemistry is not just something that happens in a laboratory; chemistry surrounds you at every moment. Several outstanding artists have helped me to develop photographs and art that will help you visualize the molecular world. From the opening example to the closing chapter, you will *see* chemistry. My hope is that when you finish this course, you will think differently about your world because you understand the molecular interactions that underlie everything around you.

My second goal is for you to develop problem-solving skills. No one succeeds in chemistry—or in life, really—without the ability to solve problems. I can't give you a one-size-fits-all formula for problem solving, but I can and do give you strategies that will help you develop the *chemical intuition* you need to understand chemical reasoning.

Look for several recurring features throughout this book designed to help you master problem solving. The most important ones are: (1) a four-step process (Sort, Strategize, Solve, and Check) designed to help you learn how to develop a problem-solving approach; (2) the solution map, a visual aid that helps you navigate your way through problems; (3) two-column Examples, in which the left column explains in clear and simple language the purpose of each step of the solution shown in the right column; and (4) three-column Examples, which describe a problem-solving procedure while demonstrating how it is applied to two different Examples. In addition, the For More Practice feature at the end of each worked Example directs you to the end-of-chapter Problems that provide more opportunity to practice the skill(s) covered in each Example. In addition, Interactive Worked Examples are digital versions of select worked Examples from the text that help you break down problems using the book's "Sort, Strategize, Solve, and Check" technique. Interactive Worked Examples can be found in the eText 2.0 and can be accessed directly at: https://media.pearsoncmg.com/ph/ esm/esm tro intro 6/media/index.html.

Recent research has demonstrated that you will do better on your exams if you take a multiple-choice pre-exam before your actual exam. At the end of each chapter, you will find a Self-Assessment Quiz to help you check your understanding of the material in that chapter. You can string these together to make a pre-exam. For example, if your exam covers Chapters 5–7, complete the Self-Assessment Quizzes for those chapters as part of your preparation for the exam. The questions you miss on the quiz will reveal the areas you need to spend the most time studying. Studies show that if you do this, you will do better on the actual exam.

Lastly, I hope this book leaves you with the knowledge that chemistry is *not* reserved only for those with some superhuman intelligence level. With the right amount of effort and some clear guidance, anyone can master chemistry, including you.

Sincerely,

Nivaldo J. Tro tro@westmont.edu I thank all of you who have used any of the first five editions of *Introductory Chemistry*—you have made this book the best-selling book in its market, and for that I am extremely grateful. The preparation of the sixth edition has enabled me to continue to refine the book to meet its fundamental purpose: teaching chemical skills in the context of relevance.

Introductory Chemistry is designed for a one-semester, college-level, introductory or preparatory chemistry course. Students taking this course need to develop problem-solving skills—but they also must see *why* these skills are important to them and to their world. Introductory Chemistry extends chemistry from the laboratory to the student's world. It motivates students to learn chemistry by demonstrating the role it plays in their daily lives.

This is a visual book. Wherever possible, I use images to help communicate the subject. In developing chemical principles, for example, I worked with several artists to develop multipart images that show the connection between everyday processes visible to the eye and the molecular interactions responsible for those processes. This art has been further refined and improved in the sixth edition, making the visual impact sharper and more targeted to student learning. For example, I have continued to expand and refine a hierarchical system of labeling in many of the images: the white-boxed labels are the most important, the tan boxes are second in importance, and the unboxed labels are the third most important. In many cases, this system allows information to be placed closest to its point of relevance, instead of being lumped together in the caption. In addition, this allows me to treat related labels and annotations within an image in the same way, so that the relationships between them are immediately evident. My intent is to create an art program that teaches and presents complex information clearly and concisely. Many of the illustrations showing molecular depictions of a real-world object or process have three parts: macroscopic (what we can see with our eyes); molecular and atomic (space-filling models that depict what the molecules and atoms are doing); and symbolic (how chemists represent the molecular and atomic world). Students can begin to see the connections between the macroscopic world, the molecular world, and the representation of the molecular world with symbols and formulas.

The problem-solving pedagogy employs four steps as it has done in the previous five editions: Sort, Strategize, Solve, and Check. This four-step procedure guides students as they learn chemical problem solving. Students will also encounter extensive flowcharts throughout the book, allowing them to better visualize the organization of chemical ideas and concepts.

Throughout the worked Examples in this book, I use a *two-* or *three-column* layout in which students learn a general procedure for solving problems of a particular type as they see this procedure applied to one or two worked Examples. In this format, the *explanation* of how to solve a problem is placed directly beside the actual steps in the *solution* of the problem. Many of you have told me that you use a similar technique in lecture and office hours. Since students have specifically asked for connections between worked Examples and end-of-chapter Problems, I include a For More Practice feature at the end of each worked Example that lists the end-of-chapter review Examples and end-of-chapter Problems that provide additional opportunities to practice the skill(s) covered in the example. Also in this edition, we have 39 Interactive Worked Examples, which can be accessed in the eText 2.0.

A successful feature of previous editions is the Conceptual Checkpoints, a series of short questions that students can use to test their mastery of key concepts as they read through a chapter. For this edition, all Conceptual Checkpoints are embedded in eText 2.0. Emphasizing understanding rather than calculation, they are designed to encourage active learning even while reading. Your continued embrace of this feature prompted me to add more of these to the sixth edition.

In this edition, I have also added a new category of End-of-Chapter Questions called *Data Interpretation and Analysis*. These questions present real data in real-life situations and ask students to analyze and interpret that data. They are designed to give students much needed practice in reading graphs, understanding tables, and making data-driven decisions.

In my own teaching, I have been influenced by two studies published in the last few years. The first one is a mega analysis of the effect of active learning on student learning in STEM disciplines.¹ In this study, Freeman and his coworkers convincingly demonstrate that students learn better when they are active in the process. The second study focuses on the effect of multiple-choice pretests on student exam performance.² Here, Pyburn and his coworkers show that students who take a multiple-choice pretest do better on exams than those who do not. Even more interesting, the enhancement is greater for lower performing students. In my courses, I have implemented both active learning and multiple-choice pretesting with good results. In my books, I have developed tools to allow you to incorporate these techniques as well.

To help you with active learning, I have added 12 Key Concept Videos to the media package that accompanies this book. These three- to five-minute videos each introduce a key concept from the chapter. They are themselves interactive because every video has an embedded question posed to the student to test understanding. In addition, there are 19 new Interactive Worked Examples adding to a total of 39 new and revised Interactive Worked Example videos in the media package. This means that you now have a library of 31 new interactive videos and a total of 51 new and revised interactive videos to enhance your course.

In my courses, I use these videos in conjunction with the book to implement a *before, during, after* strategy for my students. My goal is simple: *Engage students in active learning before class, during class, and after class.* To that end, I assign a video *before* most class sessions. All Key Concept Videos and Interactive Worked Examples are embedded and interactive in eText 2.0, allowing students to review and test their understanding in real-time. The video introduces students to a concept or problem that I will cover in the lecture. *During* class, I expand on the concept or problem using *Learning Catalytics*TM to question my students. Instead of simply passively listening to a lecture, they are interacting with the concepts through questions that I pose. Sometimes I ask my students to answer individually, other times in pairs or even groups. This approach has changed my classroom. Students engage in the material in new ways. They are actively learning and have to think and process and interact. Finally, *after* class, I give them another assignment, usually a short follow-up question or problem. At this point, they must apply what they have learned to solve a problem.

To help you with multiple-choice pretesting, each chapter contains a Self-Assessment Quiz. Like the Conceptual Checkpoints and the videos, these quizzes are embedded in eText 2.0. These quizzes are designed so that students can test themselves on the core concepts and skills of each chapter. I encourage my students to use these quizzes as they prepare for exams. For example, if my exam covers Chapters 5–8, I assign the quizzes for those chapters for credit (you can do this in MasteringChemistryTM). Students then get a pretest on the core material that will be on the exam.

My goal with this new edition is to continue to help you make learning a more active (rather than passive) process for your students. I hope the tools that I have provided here continue to aid you in teaching your students better and more effectively. Please feel free to email me with any questions or comments you might have. I look forward to hearing from you as you use this book in your course.

Sincerely, Nivaldo J. Tro tro@westmont.edu

¹ Freeman, Scott; Eddy, Sarah L.; McDonough, Miles; Smith, Michelle K.; Okoroafor, Nnadozie; Jordt, Hannah; and Wenderoth, Mary Pat; Active learning increases student performance in science, engineering, and mathematics, 2014, Proc. Natl. Acad. Sci.

² Daniel T. Pyburn, Samuel Pazicni, Victor A. Benassi, and Elizabeth M. Tappin J. Chem. Educ., 2014, 91 (12), pp. 2045–2057.

What's New in This Edition?

The book has been extensively revised and contains more small changes than can be detailed here. The most significant changes to the book and its supplements are listed below.

- I have added a new category of end-of-chapter questions called *Data Interpretation and Analysis*. These questions present real data in real-life situations and ask students to analyze that data. They give students much needed practice in reading graphs, digesting tables, and making data-driven decisions. A new section (Section 1.4), including a new in-chapter worked Example (Example 1.4), introduces these skills.
- There are 12 new Key Concept Videos and 19 new Interactive Worked Examples to accompany the book. That means there are 31 new videos and 51 total new and revised interactive videos to accompany the material in the sixth edition. All Key Concept Videos and Interactive Worked Examples are embedded and interactive in eText 2.0, allowing students to review and test their understanding in real-time. These tools are designed to help professors engage their students in active learning. Recent research has conclusively demonstrated that students learn better when they are active in the learning process, as opposed to passively listening and simply taking in content. The Key Concept Videos are brief (three to five minutes), and each introduces and explains a key concept from a chapter. The student does not just passively listen to the video; the video stops in the middle and poses a question to the student. The student must answer the question before the video continues. Each video also includes a follow-up question that is assignable in MasteringChemistryTM. The Interactive Worked Examples are similar in concept, but instead of explaining a key concept, they walk the student through one of the in-chapter worked examples from the book. Like the Key Concept Videos, Interactive Worked Examples stop in the middle and force the student to interact by completing a step in the example. The examples also have a follow-up question that is assignable in MasteringChemistry™. The power of interactivity to make connections in problem solving is immense. I did not quite realize this power until we started making the Interactive Worked Examples and I saw how I could use the animations to make connections that are just not possible on the static page.
- All chapter-ending Self-Assesment Quizzes are embedded in eText 2.0.
- I have added 13 new Conceptual Checkpoint questions throughout the book. For this edition, all Conceptual Checkpoints are embedded in eText 2.0.
- I have updated the data throughout the book to reflect the most recent measurements and developments available. I changed the half-life of carbon-14 to 5715 years in Table 17.2 and throughout Chapter 17 to reflect the current accepted value, and I also added new information about *thermoluminescent dosimeters* (and deleted the information on film badge dosimeters) to Section 17.4. Other updates include changes to Figure 8.2, *Climate change*; Section 10.1, *Bonding Models and AIDS Drugs*; Table 11.5, *Changes in Pollutant Levels for Major U.S. Cities, 1980–2014*; the *Chemistry in the Environment* box in Section 12.8, *Water: A Remarkable Molecule*; and Section 17.8, *Nuclear Power: Using Fission to Generate Electricity*.

- Several chapter-opening sections and (or) the corresponding art, including Sections 1.1, 2.1, 12.1, and 16.1, have been replaced or significantly modified.
- I added a new section (Section 2.8) and new worked example (Example 2.12) as well as new end-of-chapter Problems to address conversions involving quantities with combined units such as mL/kg or km/hr.
- I have extensively modified the art program to move information from the captions and into the art itself. This allows relevant information to be placed right where it is most needed and makes the art a more accessible study and review tool. I have modified 70 figures in this way.
- I have modified end-of-chapter Problems that were showing low levels of student success when assigned in MasteringChemistryTM.
- I have added temporary symbols for elements 113, 115, 117, and 118 (Uut, Uup, Uus, and Uuo, respectively) to all periodic tables.
- In all chapters, chapter text was edited for clarity and to limit use of passive voice and extraneous words and phrases.

Teaching Principles

The development of basic chemical principles—such as those of atomic structure, chemical bonding, chemical reactions, and the gas laws—is one of the main goals of this text. Students must acquire a firm grasp of these principles in order to succeed in the general chemistry sequence or the chemistry courses that support the allied health curriculum. To that end, the book integrates qualitative and quantitative material and proceeds from concrete concepts to more abstract ones.

Organization of the Text

The main divergence in topic ordering among instructors teaching introductory and preparatory chemistry courses is the placement of electronic structure and chemical bonding. Should these topics come early, at the point where models for the atom are being discussed? Or should they come later, after the student has been exposed to chemical compounds and chemical reactions? Early placement gives students a theoretical framework within which they can understand compounds and reactions. However, it also presents students with abstract models before they understand why they are necessary. I have chosen a later placement; nonetheless, I know that every course is unique and that each instructor chooses to cover topics in his or her own way. Consequently, I have written each chapter for maximum flexibility in topic ordering. In addition, the book is offered in two formats. The full version, *Introductory Chemistry*, contains 19 chapters, including organic chemistry and biochemistry. The shorter version, *Introductory Chemistry Essentials*, contains 17 chapters and omits these topics.

Print and Media Resources

0134564057 / 9780134564050	Instructor Resource Manual with Complete Solutions
013455342X / 9780134553429	TestGen Test Bank (Download only)
0134553446 / 9780134553443	Instructor Resource Materials (Download only)
	Instructor's Guide (Download only) for Student's Guided Activity Workbook
0134553411 / 9780134553412	Study Guide
0134564065 / 9780134564067	Student Selected Solutions Manual
0134555554 / 9780134555553	Modified MasteringChemistry™ with Pearson eText–Instant Access
0134555570 / 9780134555577	MasteringChemistry™ with Pearson eText–Instant Access

Acknowledgments

This book has been a group effort, and I am grateful for all of those who helped me. First and foremost, I would like to thank my editor Scott Dustan. I have known Scott for many years and in various roles, and am grateful to have him as my editor. I appreciate his straightforward style, constant support, and commitment to my work. I am also in a continual state of awe and gratitude to Erin Mulligan, my development editor and friend. Thanks, Erin, for all your outstanding help and advice. Thanks also to Jackie Jakob, media editor extraordinaire. Jackie is the force behind the media elements that accompany this book, and I am grateful for her vision, guidance, and friendship. Thanks also to Jennifer Hart, with whom I have now worked for over a decade. Thanks Jennifer for your constant attention, guidance, and wisdom on all of my projects at Pearson. I am also grateful for Jeanne Zalesky, Adam Jaworski, Paul Corey and the rest of Pearson leadership. You have supported my projects and my vision from the beginning, and I am privileged to work with you.

I would also like to thank Elizabeth Ellsworth, my marketing manager, whose creativity in describing and promoting the book is without equal. I am also grateful to Coleen Morrison, whose help with editing and manuscript preparation was invaluable. Thanks also to the MasteringChemistryTM team who continue to provide and promote the best online homework system on the planet. I also appreciate the expertise and professionalism of my copy editor, Betty Pessagno, as well as the skill and diligence of Francesca Monaco and her colleagues at codeMantra. I am a picky author, and they always accommodated my seemingly endless requests. Thank you, Francesca. Thanks as well to my content producer, Chandrika Madhavan and the rest of the Pearson editorial and production team—they are part of a

first-class operation. This text has benefited immeasurably from their talents and hard work. I owe a special debt of gratitude to Quade Paul, who continues to make my ideas come alive in his chapter-opener and cover art.

I am grateful for the assistance of my colleagues, Allan Nishimura, David Marten, Stephen Contakes, Kristi Lazar, Carrie Hill, Michael Everest, Amanda Silberstein, and Heidi Henes-Vanbergen, who have supported me in my department while I worked on this book. I owe a special debt of gratitude to Michael Tro. He has been helping me with manuscript preparation, proofreading, organizing art manuscripts, and tracking changes in end-of-chapter material for the past six years. Michael has been reliable, accurate, and invaluable. Thanks Mikee! I also owe a special thanks to my colleagues Michael Everest and Tom Greenbowe, who collaborated with me in creating some of the end of chapter questions.

I am grateful to those who have given so much to me personally while writing this book. First on that list is my wife, Ann. Her patience and love for me are beyond description. I also thank my children, Michael, Ali, Kyle, and Kaden, whose smiling faces and love of life always inspire me. I come from a large Cuban family, whose closeness and support most people would envy. Thanks to my parents, Nivaldo and Sara; my siblings, Sarita, Mary, and Jorge; my siblings-in-law, Jeff, Nachy, Karen, and John; my nephews and nieces, Germain, Danny, Lisette, Sara, and Kenny. These are the people with whom I celebrate life.

Lastly, I am indebted to the many reviewers, listed next, whose ideas are found throughout this book. They have corrected me, inspired me, and sharpened my thinking on how best to teach this subject we call chemistry. I deeply appreciate their commitment to this project.

Reviewers of the 6th Edition

Premilla Arasasingham El Camino College Crystal Bendenbaugh Southeastern University Charles Carraher Florida Atlantic University Cassidy Dobson St. Cloud University David Futoma Roger Williams University Galen George

Marcia Gillette Indiana University Kokomo Ganna Lyubartseva Southern Arkansas University Helen Motokane El Camino College David Rodgers North Central Michigan College Mu Zheng Tennessee State University

6th Edition Accuracy Reviewers

Kelly Befus Anoka-Ramsey Community College Stevenson Flemer University of Vermont

Lance Lund Anoka-Ramsey Community College

Tanea Reed Eastern Kentucky University Jennifer Zabzydar Palomar College

Reviewers of the 5th Edition

Scott Bunge Kent State University

Santa Rosa Junior College

Ebru Buyuktanir Stark State College

Claire Cohen University of Toledo

Robert Culp California State University — Fresno

Rosa Davila College of Southern Idaho

Alyse Dilts *Harrisburg Area Community College* Sylvia Esjornson

Southwestern Oklahoma State University

Jennifer Firestine Lindenwood University Kathy Flynn College of the Canyons Sara Harvey Los Angeles Pierce College

Michael Hauser St. Louis Community College — Meramec

Edward Lee Texas Tech University

Craig McClure University of Alabama — Birmingham

Virginia Miller Montgomery College

Michael Rodgers Southeast Missouri State University

Janice Webster Ivy Tech Community College — Terre Haute James Zubricky University of Toledo

5th Edition Accuracy Reviewers

Alyse Dilts Harrisburg Area Community College Stevenson Flemer Jr. University of Vermont Connie Lee Montgomery County Community College Lance Lund Anoka-Ramsey Community College Kent McCorkle Fresno City College

Reviewers of the 4th Edition

Jeffrey Allison Austin Community College Mikhail V. Barybin The University of Kansas Lara Baxley California Polytechnic State University Kelly Befus Anoka-Ramsey Community College Joseph Bergman Illinois Central College Simon Bott University of Houston

Carmela Byrnes *MiraCosta College*

Carmela Magliocchi Brynes MiraCosta College Guy Dadson Fullerton College Maria Cecilia D. de Mesa **Baylor University** Brian G. Dixon Massachusetts Maritime Academy Timothy Dudley Villanova University Jeannine Eddleton Virginia Tech Ron Erickson University of Iowa Donna Friedman St. Louis Community College—Florissant Valley Luther D. Giddings Salt Lake Community College

Marcus Giotto Quinsigamond Community College Melodie Graber Oakton Community College

Maru Grant Ohlone College

Jerod Gross Roanoke Benson High School

Tammy S. Gummersheimer Schenectady County Community College

Tamara E. Hanna Texas Tech University

Michael A. Hauser St. Louis Community College

Bruce E. Hodson Baylor University **XXIV** | Preface

Donald R. Jones Lincoln Land Community College Martha R. Kellner Westminster College Farkhondeh Khalili Massachusetts Bay Community College Margaret Kiminsky Monroe Community College

Rebecca Krystyniak Saint Cloud State

Chuck Laland Black Hawk College Richard Lavallee Santa Monica College Laurie Leblanc Cuyamaca College Nancy Lee MiraCosta College Vicki MacMurdo Anoka-Ramsey Community College Jack F. McKenna St. Cloud State University Virginia Miller Montgomery College Geoff Mitchell Washington International School Meg Osterby Western Technical College John Petty

University of South Alabama Jason Serin Glendale Community College

Michael A. Hauser

Steven Socol McHenry Community College Youngju Sohn Florida Institute of Technology Jie Song University of Michigan—Flint Clarissa Sorenson-Unruh Central New Mexico Community College David Vanderlinden Des Moines Area Community College Vidyullata C. Waghulde St. Louis Community—Meramec

Reviewers of the 3rd Edition

Benjamin Arrowood Ohio University Joe Bergman Illinois Central College Timothy Dudley Villanova University Sharlene J. Dzugan University of Cumberlands Thomas Dzugan University of Cumberlands Donna G. Friedman

St. Louis Community College Erick Fuoco Daley College Melodie A. Graber Oakton Community College St. Louis Community College, Meramec Campus Martha R. Joseph Westminster College Timothy Kreider University of Medicine & Dentistry of New Jersey Laurie Leblanc Grossmont College Carol A. Martinez Central New Mexico Community College Kresimir Rupnik Louisiana State University Kathleen Thrush Shaginaw Particular Solutions, Inc. Pong (David) Shieh Wharton College Mary Sohn

Florida Tech Kurt Allen Teets

Okaloosa-Walton College

John Thurston University of Iowa

Anthony P. Toste Missouri State University

Carrie Woodcock Eastern Michigan University

Reviewers of the 2nd Edition

David S. Ballantine, Jr. Northern Illinois University Colin Bateman Brevard Community College Michele Berkey San Juan College Steven R. Boone Central Missouri State University Morris Bramlett University of Arkansas—Monticello Bryan E. Breyfogle Southwest Missouri State University Frank Carey Wharton County Junior College Robbey C. Culp Fresno City College Michelle Driessen University of Minnesota—Minneapolis Donna G. Friedman St. Louis Community College—Florissant Valley Crystal Gambino Manatee Community College Steve Gunther Albuquerque Technical Vocational Institute Michael Hauser St. Louis Community College—Meramec Newton P. Hillard, Jr. Eastern New Mexico University Carl A. Hoeger University of California—San Diego Donna K. Howell Angelo State University Nichole Jackson Odessa College T. G. Jackson University of South Alabama

Preface **XXV**

Donald R. Jones Lincoln Land Community College

Kirk Kawagoe Fresno City College

Roy Kennedy Massachusetts Bay Community College Blake Key Northwestern Michigan College

Rebecca A. Krystyniak St. Cloud State University

Laurie LeBlanc Cuyamaca College Ronald C. Marks Warner Southern College Carol A. Martinez Albuquerque Technical Vocational Institute Charles Michael McCallum University of the Pacific Robin McCann Shippensburg University Victor Ryzhov Northern Illinois University Theodore Sakano Rockland Community College Deborah G. Simon

Santa Fe Community College Mary Sohn Florida Institute of Technology Peter-John Stanskas San Bernardino Valley College

James G. Tarter College of Southern Idaho

Ruth M. Topich *Virginia Commonwealth University* Eric L. Trump

Emporia State University

Mary Urban College of Lake County

Richard Watt University of New Mexico Lynne Zeman Kirkwood Community College

Reviewers of the 1st Edition

Lori Allen University of Wisconsin—Parkside

Laura Andersson Big Bend Community College Danny R. Bedgood

Arizona State University

Christine V. Bilicki Pasadena City College

Warren Bosch Elgin Community College

Bryan E. Breyfogle Southwest Missouri State University

Carl J. Carrano Southwest Texas State University

Donald C. Davis College of Lake County

Donna G. Friedman St. Louis Community College at Florissant Valley Leslie Wo-Mei Fung Loyola University of Chicago Dwayne Gergens San Diego Mesa College George Goth Skyline College

Jan Gryko Jacksonville State University

Roy Kennedy Massachusetts Bay Community College

C. Michael McCallum University of the Pacific

Kathy Mitchell St. Petersburg Junior College Bill Nickels

Schoolcraft College

Bob Perkins Kwantlen University College Mark Porter Texas Tech University Caryn Prudenté

University of Southern Maine Rill Ann Reuter

Winona State University Connie M. Roberts

Henderson State University Jeffery A. Schneider

SUNY—Oswego Kim D. Summerhays

University of San Francisco Ronald H. Takata

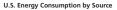
Honolulu Community College

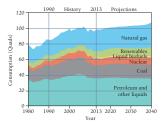
Calvin D. Tormanen Central Michigan University

Eric L. Trump Emporia State University

Help students develop 21st-century skills to succeed in chemistry courses, future careers, and beyond.

Nivaldo Tro's approach introduces students to 21st-century skills, encouraging them to think critically when they encounter complex information and real-world problems.


NEW! Data Interpretation and Analysis


Questions at the end of each chapter allow students to work with real data to develop 21st-century problem-solving skills. These questions ask students to sort, analyze and interpret actual data from real-life situations. Students practice reading graphs, digesting tables, and making data-driven decisions.

Data Interpretation and Analysis

- Data interpretation and Analysis
 124. The graph at right show U.S. energy consumption by source from 1980 to 2040 (based on projections). The consumption is measured in quadfillion BTUs or quads (1 quad = 1.055 × 10¹⁸).
 (a) What were the three largest sources of U.S. energy in 2013 in descending order? What total percent of U.S. energy of othese three sources provide?
 (b) What percent of total U.S. energy is provided by remevables in 2013?

 - (a) Which two sources of U.S. energy is provided by renewables in 2013?
 (c) Which two sources of U.S. energy decline as a per-centage of total energy use between 1989 and 2040 (based on projections)?
 (d) How much U.S. energy (in joules) was produced by nuclear power in 1990?

A new section (Section 1.4), which includes a new in-chapter worked example (Example 1.1), introduces data interpretation and analysis skills and emphasizes their importance in student success.

1.4 Analyzing and	Inter	pretir	ig Data			
 Identify patterns in data and interpret graphs. 	We just learned how early scientists such as Lavoisier and Dalton saw patterns in a series of related measurements. Sets of measurements constitute scientific data, and learning to analyze and interpret data is an important scientific skill.					
	Identifying Patterns in Data					
	Suppose you are an early chemist trying to understand the composition You know that water is composed of the elements hydrogen and oxy do several experiments in which you decompose different samples of w hydrogen and oxygen, and you get the following results:			drogen and oxyges ent samples of wat	n. You	
		Sample	Mass of Water Sample	Mass of Hydrogen Formed	Mass of Oxygen Formed	
the su: water oxyger which		A B C	20.0 g 50.0 g 100.0 g	2.2 g 5.6 g 11.1 g	17.8 g 44.4 g 88.9 g	
	Do you notice any patterns in this data? The first and easiest pattern to see is that the sum of the masses of oxygen and hydrogen always sums to the mass of the water sample. For example, for the first water sample, 22 g hydrogen + 17.8 g oxygen = 20.0 g water. The same is true for the other samples. Another pattern which is a bit more difficult to see, is that the ratio of the masses of oxygen and hydrogen is the same for each sample.				of the 17.8 g attern,	
		Sample	Mass of Hydrogen Formed	Mass of Oxygen Formed	Mass Oxygen Mass Hydrogen	
		A B C	2.2 g 5.6 g 11.1 g	17.8 g 44.4 g 88.9 g	8.1 7.9 8.01	
			e small variations a ements and observ		ental error, which is	; com-

A	tmosph	eric Ca	rbon D	ioxide	
5 400	TTTT				7
Carbon dioxide concentration (parts per million) 300 300 300 300					A
oilli 360				- /	
ə 1 340					
Xolf 320	###				
ug ²⁰ 300	###				
Ē	++++				-
	1860	1900	1940 Year	1980	2020

FIGURE 1.5 Atmospheric carbon dioxide levels from 1860 to present.

All Data Interpretation and Analysis Questions are assignable in MasteringChemistry™

1.4 Analyzing and Interpreting Data 9

Seeing patterns in data is a creative process that requires you to not just merely tabulate laboratory measurements, but to see relation-ships that may not always be obvious. The best scientists see patterns that others have missed. As you learn to interpret data in this course, be creative and try looking at data in new ways.

Interpreting Graphs

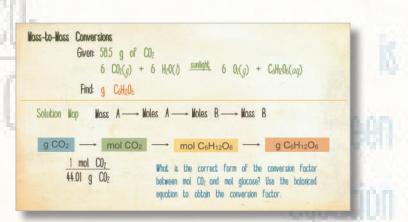
Data is often visualized using graphs or images, and scientists must

Examine the graph in Figure 1.5 and answer each question.	
 (a) What was the concentration of carbon dioxide in 1960? (b) What was the concentration in 2000? (c) How much did the concentration increase between 1960 (d) What is the average rate of increase over this time? (e) If the average rate of increase remains constant, estimate 	
SOLUTION	
a) What was the concentration of carbon dioxide in 1960?	Atmospheric Carbon Dioxide
To determine the concentration of carbon dioxide in 1960, draw a vertical line at the year 1960. At the point where the vertical line intersects the carbon dioxide concentration curve, draw a horizontal line. The point where the hori- zontal line intersects the yaxis represents the concentration in 1960. So, the concentration in 1960 was 318 ppm.	400 (Figure 1) 100 (Figure 1) 100 (F
b) What was the concentration in 2000?	Atmospheric Carbon Dioxide
Apply the same procedure as in part a, but now shift the vertical line to the year 2000. The concentration in the year 2000 was 370 ppm.	400 (e) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f

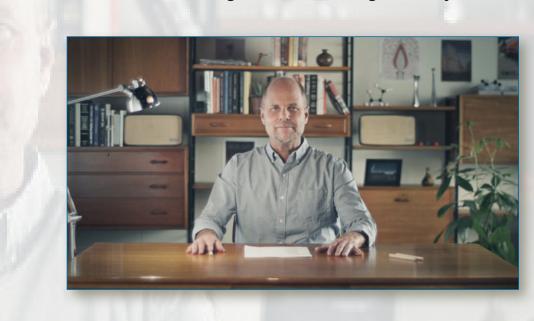
Students build a framework for solving problems.

Nivaldo Tro's unique problem-solving technique, "Sort, Strategize, Solve, and Check," teaches students how to successfully approach, set up, and solve the problems they encounter in their introductory chemistry course. Solution maps visually walk students through problems and help them learn how to organize and use given information to successfully solve problems.

Two- and threecolumn example formats help students break down the steps of each problem and learn and practice problem-solving techniques they can apply in other assignments.


A candy bar contains 225 Cal of nutritional energy. How n	hany joules does it contain?	
SORT	GIVEN: 225 Cal	
Begin by sorting the information in the problem. Here you are <i>given</i> energy in Calories and asked to <i>find</i> energy in joules.	FIND: J	
STRATEGIZE	SOLUTION MAP	
Draw a solution map. Begin with Cal, convert to cal, and then convert to J.	$\begin{array}{ccc} cal & J \\ \hline cal & J \\ \hline \frac{1000 \text{ cal}}{1 \text{ cal}} & \frac{4.184 \text{ J}}{1 \text{ cal}} \end{array}$	
	RELATIONSHIPS USED	
	1000 calories = 1 Cal (Table 3.2) 4.184 J = 1 cal (Table 3.2)	
SOLVE	SOLUTION	
Follow the solution map to solve the problem. Begin with 225 Cal and multiply by the appropriate conversion fac- tors to arrive at J. Round the answer to the correct num- ber of significant figures (in this case, three because of the three significant figures in 225 Cal).	$225 \text{ Cal} \ \times \ \frac{1000 \text{ cal}}{1 \text{ Cal}} \times \frac{4.184 \text{ J}}{1 \text{ cal}} = 9.41 \times 10^5 \text{ J}$	
CHECK	The units of the answer (J) are the desired units. The	
Check your answer. Are the units correct? Does the answer make physical sense?	magnitude of the answer makes sense because the J is a smaller unit than the Cal; therefore, the quantity of energy in J should be greater than the quantity in Cal.	
SKILLBUILDER 3.5 Conversion of Energy Units		
The complete combustion of a small wooden match produced are produced?	ces approximately 512 cal of heat. How many kilojoules	
► SKILLBUILDER PLUS Convert 2.75 × 10 ⁴ kJ to calories.		
► FOR MORE PRACTICE Example 3.16; Problems 51, 52, 53, 54,	EE E6 E7 E9	

	EXAMPLE 2.8	EXAMPLE 2.9
Problem-Solving	UNIT CONVERSION	UNIT CONVERSION
Procedure	Convert 7.8 km to miles.	Convert 0.825 m to millimeters.
SORT	GIVEN: 7.8 km	GIVEN: 0.825 m
Begin by sorting the information in the problem into given and find.	FIND: mi	FIND: mm
STRATEGIZE	SOLUTION MAP	SOLUTION MAP
Draw a solution map for the problem. Begin with the given quantity and	km → mi	m → mm
symbolize each step with an arrow. Below the arrow, write the conver-	0.6214 mi	$\frac{1 \text{ mm}}{10^{-3} \text{ m}}$
sion factor for that step. The solution	RELATIONSHIPS USED	RELATIONSHIPS USED
map ends at the <i>find</i> quantity. (In these examples, the relationships	1 km = 0.6214 mi	$1 \text{ mm} = 10^{-3} \text{ m}$
used in the conversions are below	(This conversion factor is from	(This conversion factor is from
the solution map.)	Table 2.3.)	Table 2.2.)
SOLVE Follow the solution map to solve	SOLUTION	SOLUTION
the problem. Begin with the given	$7.8 \text{ km} \times \frac{0.6214 \text{ mi}}{1 \text{ km}} = 4.84692 \text{ mi}$	$0.825 \text{ pr} \times \frac{1 \text{ mm}}{10^{-3} \text{ rr}} = 825 \text{ mm}$
quantity and its units. Multiply by the appropriate conversion factor,	4.84692 mi = 4.8 mi	10 ° m 825 mm = 825 mm
canceling units to arrive at the find quantity.	4.04072 III - 4.0 III	025 mm = 025 mm
quantity.		
Round the answer to the correct	Round the answer to two significant	Leave the answer with three sig-
number of significant figures. (If possible, obtain conversion factors	figures because the quantity given has two significant figures.	nificant figures because the quantity given has three significant figures
to enough significant figures so that	0	and the conversion factor is a defini-
they do not limit the number of sig- nificant figures in the answer.)		tion and therefore does not limit the number of significant figures in the
		answer.
CHECK Check your answer. Are the units	The units, mi, are correct. The magni- tude of the answer is reasonable.	The units, mm, are correct, and the magnitude is reasonable. A milli-
correct? Does the answer make	A mile is longer than a kilometer, so	meter is shorter than a meter, so the
sense?	the value in miles should be smaller than the value in kilometers.	value in millimeters should be larger than the value in meters.
	SKILLBUILDER 2.8 Unit Conversion	SKILLBUILDER 2.9 Unit Conversion
	Convert 56.0 cm to inches.	Convert 5678 m to kilometers.
	► FOR MORE PRACTICE Example 2.26;	► FOR MORE PRACTICE Problems 69, 70,


NEW! and UPDATED! Interactive

Worked Examples are digital versions of select worked examples from the text that make Nivaldo Tro's unique problemsolving strategies interactive. In these digital versions the author walks students through the problem-solving process, asking them to pause and answer questions along the way. Worked example videos are embedded in eText 2.0 and assignable in MasteringChemistry[™].

Students learn to think critically about information in the classroom and in everyday life.

NEW! Key Concept Videos combine artwork from the textbook with 2D and 3D animations to create a dynamic on-screen viewing experience and help students understand and apply important concepts throughout the text. Key Concept Videos are embedded in eText 2.0 and are assignable in MasteringChemistry[™].

These short

PEARSON

eText 2.0

(3–5 minutes) videos combine animation and live-action clips of author Nivaldo Tro explaining the key concept of each chapter. Embedded questions in each video increase engagement and test student understanding. Follow-up questions are assignable in MasteringChemistry™.

UPDATED! Chapterin-Review Exercises and Self-Assessment Quizzes have

been revised using MasteringChemistry™ metadata to identify questions that students struggled with in previous editions. In addition to a full complement of endof-chapter questions, each chapter features a 10–15 multiple-choice question quiz that help students assess their understanding of chapter content, building critical thinking skills and reinforcing key concepts.

Chapter 3 in Review

Self-Assessment Quiz eText

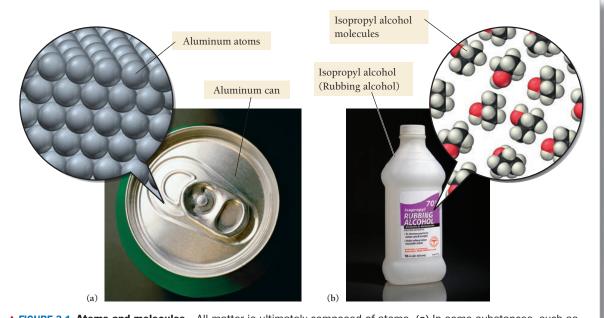
- Q1. Which substance is a pure compound? (a) Gold (b) Water (c) Milk (d) Fruit cake
- (c) Milk(d) Fruit cakeQ2. Which property of trinitrotoluene (TNT) is most likely a
 - chemical property?
 - (a) Yellow color(b) Melting point is 80.1 °C
 - (c) Explosive
 - (d) None of the above
- Q3. Which change is a chemical change?(a) The condensation of dew on a cold night(b) A forest fire(c) The smoothening of rocks by ocean waves
 - (c) The smoothening of rocks by ocean waves(d) None of the above
- Q4. Which process is endothermic?
 (a) The burning of natural gas in a stove
 (b) The metabolism of glucose by your body
 (c) The melting of ice in a soft drink
 (d) None of the above
- Q5. A 35-g sample of potassium completely reacts with chlorine to form 67 g of potassium chloride. How many grams of chlorine must have reacted?
 (a) 67 g
 (b) 35 g
 (c) 32 g
 (d) 12 g
- Q6. A runner burns 2.56 × 10³ kJ during a five-mile run. How many nutritional Calories did the runner burn?
 (a) 1.07 × 10¹ Cal
 (b) 612 Cal
 (c) 6.12 × 10⁵ Cal
 (d) 1.07 × 10⁴ Cal

MasteringChemistry[™] provides end-of-chapter exercises, feedbackenriched tutorial problems, animations, and interactive activities to encourage problem solving practice and deeper understanding of key concepts and topics.

- **Q7.** Convert the boiling point of water (100.00 °C) to K. (a) −173.15 K
 - (b) 0 K (c) 100.00 K

(c) 100.00 K (d) 373.15 K

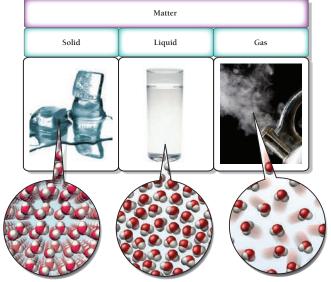
- Q8.
 A European doctor reports that you have a fever of 39.2 °C. What is your fever in degrees Fahrenheit?
 (a) 102.6 °F
 (b) 128.26 °F
 (c) 71.2 °F
 (d) 4 °F
- Q9. How much heat must be absorbed by 125 g of ethanol to change its temperature from 21.5 °C to 34.8 °C?
 (a) 6.95 kJ
 - (b) 4.02×10^3 kJ (c) 86.6 kJ

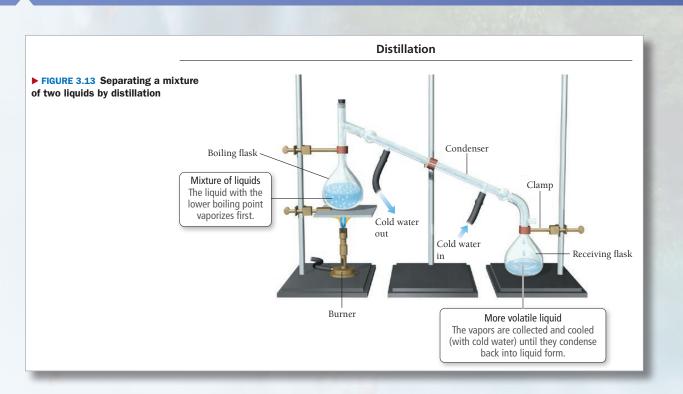

(d) 4.02 kJ

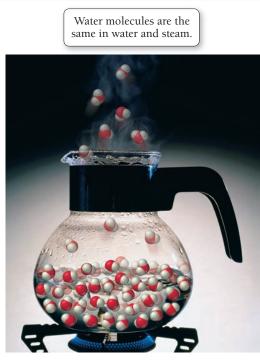
- **Q10.** Substance A has a heat capacity that is much greater than that of substance B. If 10.0 g of substance A initially at 25.0 °C is brought into thermal contact with 10.0 g of B initially at 75.0 °C, what can you conclude about the final temperature of the two substances once the exchange of heat between the substances is complete?
 - (a) The final temperature will be between 25.0 °C and 50.0 °C.
 - (b) The final temperature will be between 50.0 $\,^{\circ}\mathrm{C}$ and 75.0 $\,^{\circ}\mathrm{C}.$
 - (c) The final temperature will be 50.0 °C.
 - (d) You can conclude nothing about the final temperature without more information.

Answers: 1:b, 2:c, 3:b, 4:c, 5:c, 6:b, 7:d, 8:a, 9:d, 10:a

Multipart macroscopic and molecular images engage students in chemistry.


Multipart images allow students to see the relationship between the formulas they write down on paper (symbolic), the world they see around them (macroscopic), and the atoms and molecules that compose the world (molecular).


▲ FIGURE 3.1 Atoms and molecules All matter is ultimately composed of atoms. (a) In some substances, such as aluminum, the atoms exist as independent particles. (b) In other substances, such as rubbing alcohol, several atoms bond together in well-defined structures called molecules.


Abundant molecular-level views show students the connection between everyday processes that are visible to the eye and the behavior of atoms and molecules.

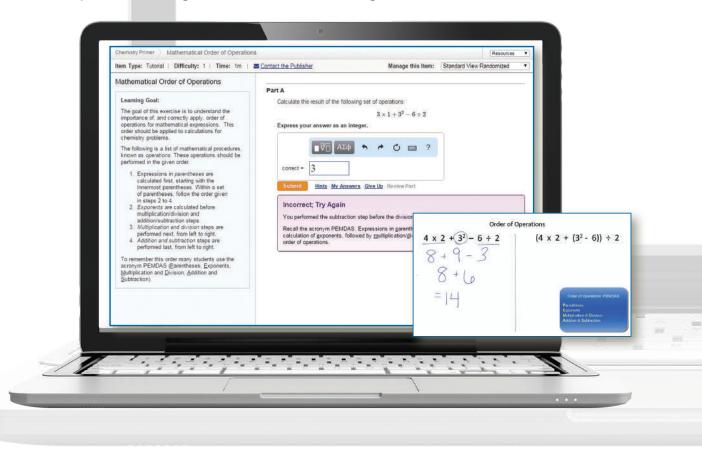
▶ FIGURE 3.4 Three states of matter Water exists as ice (solid), water (liquid), and steam (gas). In ice, the water molecules are closely spaced and, although they vibrate about a fixed point, they do not generally move relative to one another. In liquid water, the water molecules are also closely spaced but are free to move around and past each other. In steam, water molecules are separated by large distances and do not interact significantly with one another.

A revised art program helps students make connections and see that chemistry is all around them.

▲ FIGURE 3.9 A physical property The boiling point of water is a physical property, and boiling is a physical change. When water boils, it turns into a gas, but the water molecules are the same in both the liquid water and the gaseous steam. NEW and UPDATED! Illustrations include extensive labels and annotations to direct

student attention to key elements in the art and promote understanding of the processes depicted. Numerous figures in the sixth edition have updated labels and annotations to focus readers on key concepts. Relevant information is placed where it is most needed and makes the art a vital study and review tool.

Dynamic Study Modules and the Chemistry Primer help students come to class prepared.



66 Dynamic Study Modules adapt to

students' individual levels of understanding and help them study effectively on their own. Dynamic Study Modules continuously assess student activity and performance in real time. These are available as graded assignments prior to class and are accessible on smartphones, tablets, and computers.

Topics include key math skills and general chemistry concepts such as phases of matter, redox reactions, acids and bases, solutions, and chemical equilibrium.

The Chemistry Primer's pre-built diagnostic assignments get students up-to-speed at the beginning of the course, addressing topics such as math in the context of chemistry, basic chemical literacy, balancing chemical equations, mole theory, and stoichiometry. The Chemistry Primer scales to students' needs – remediation is only suggested to students that perform poorly on initial assessment, and involves Tutorials, Wrong-Answer Specific Feedback, Video Instruction, and Step-Wise Scaffolding to build student understanding.

